

SwyxIt! Client SDK

Swyx Solutions GmbH

Emil-Figge-Str. 86

44227 Dortmund

SwyxIt! Client SDK

Last changed: 9/3/2018 2/17

1 Overview .. 3

1.1 Disclaimer .. 3

1.2 Operation Mode .. 3
1.2.1 Normal Mode vs. Power Dial Mode .. 3

1.3 Client Architecture ... 4

1.4 Methods and Events .. 4

1.5 Lines, Selected Line & Line States .. 5

1.6 CClientLineMgr Methods .. 7

2 Programming Guide ... 9

2.1 Creating Line Manager Object and Accessing Lines .. 9
2.1.1 VB Script .. 9
2.1.2 VB 6 (no longer tested) .. 9
2.1.3 VB .Net Simple .. 10
2.1.4 C# .Net Simple ... 10
2.1.5 C++ ... 11

2.2 Linking Media Streaming of Lines in Power Dial Mode 11

2.3 Sample Code .. 13
2.3.1 Visual Basic Script ... 13
2.3.2 Visual C++ ATL PlugIn ... 13
2.3.3 Visual C++ Call Log .. 14
2.3.4 Visual C++ PlayToRtp ... 14
2.3.5 Visual C++ Simple ... 14
2.3.6 Visual C++ WakeUp .. 14
2.3.7 Visual Studio.Net C# PowerDialTest ... 14
2.3.8 Visual Studio.Net C# Simple ... 15
2.3.9 Visual Studio.Net VB Simple .. 15
2.3.10 Visual Studio.Net C# IpPbxMPC ... 15
2.3.11 Visual Studio.Net C# Plugin .. 15

3 Reference ... 16

3.1 Client SDK Methods ... 16

3.2 Supported TAPI Features .. 16

SwyxIt! Client SDK

Last changed: 9/3/2018 3/17

1 Overview
One strength of SwyxIt! is the possibility of integration into 3rd party software. This allows starting

calls from CRM software or popping up screens depending on the caller id. It is even possible to build

systems for predictive dialing. SwyxIt! provides two ways of integration into 3rd party applications:

TAPI and Client SDK. Both interfaces allow at least basic call control. If there are no special reasons

for using TAPI (e.g. an existing TAPI application), we recommend to use the Client SDK. Using Cli-

ent SDK you may use any call control options of SwyxIt!.

The SDK contains samples in C++, C# and VB. When you have read this documentation, please pay

some attention to the sample code, showing some common tasks.

1.1 Disclaimer
You may use the Client SDK on your own risk. The SDK technically allows using the product in a

way that is not supported or intended. By doing this some functions might not work as expected.

This Client SDK and the sample code are provided as is. The SDK and the documented API is subject

to change without notice. Further development of the product might require changes of the API that

can lead to incompatibility with previous versions. We don’t guarantee that all currently supported

functions are part of future versions. Nevertheless the API is used internally as well and we will not

change it without very good reasons.

The Line Manager COM interface has been tested internally using…

• C++ using Visual Studio .NET 2010

• Visual Basic .NET using Visual Studio .NET 2010

• C# using Visual Studio .NET 2010

We don’t guarantee that the API works with any other versions of Microsoft Visual Studio.

The Line Manager COM API should be usable from any programming language or tool that can in-

teroperate with COM. But we cannot guarantee that the API works with other programming languages

or tools from other vendors like Borland Delphi.

1.2 Operation Mode

1.2.1 Normal Mode vs. Power Dial Mode

• Typically SwyxIt! runs in normal operation mode. In normal operation mode the audio (voice,

dial tone, alerting, busy…) of the selected line (the line in focus) is linked to a local sound de-

vice (handset, headset, speakers…). There is always exactly one line selected. When a line is

hooked off (e.g. because the user has clicked on it), it becomes the selected line and the previ-

ously selected line becomes unselected. Only the selected line can be active (connected to

peer, established voice connection, linked to local sound device), the other lines are inactive,

on hold, terminated or maybe ringing for an incoming call. When the currently selected line is

active and a different line is going to be selected, the previously selected line is automatically

put on hold. When the currently selected line is dialing or alerting and a different line is going

to be selected, the previously selected line is automatically disconnected.

• The power dial mode is used for implementing automatic call distribution systems, predictive

dialing, wake up call scenarios and such. Since this mode is intended only for unattended call

handling, there is no linkage to the local sound device at all. As a result it is possible to have

multiple active lines. The voice connection is handled by the line, by default it sends silence to

the peer and incoming voice from the peer is ignored. There is no automatism related to line

selection. When a line is hooked off, it does not become selected. When a line becomes unse-

lected, it is not put on hold or disconnected implicitly. As a matter of fact the line selection has

SwyxIt! Client SDK

Last changed: 9/3/2018 4/17

no real meaning in this mode. The only effect of line selection is that the SwyxIt! display

shows information for the selected line and user input from SwyxIt! is forwarded to the se-

lected line. But since we are talking about an unattended system, this does not matter. In most

cases the SwyxIt! user interface is not running anyway in this mode.

The power dial mode is enabled in the registry:

• Key: “HKLM\SOFTWARE\Swyx\Client Line Manager\CurrentVersion\Options”

o DWORD value “EnablePowerDialMode”: set to 1 for power dial mode, set to 0 for nor-

mal operation mode (default when value does not exist).

o DWORD value “CancelBlindTransferOnVoicemail”: set to 0 when a blind call transfer

should not be cancelled when the transfer call is connected to the voicemail or call rout-

ing. By default the client will abort a blind call transfer when it gets connected to call rout-

ing since usually we want to transfer someone to a real person. For power dial systems it

is very common to transfer calls into scripts, so this automatism should be switched off.

1.3 Client Architecture
The core component of SwyxIt! is the Client Line Manager (CLMgr). All applications like SwyxIt!,

Swyx Client TSP, Swyx Outlook AddIn and third party applications are running on top of the Client

Line Manager. All these applications are using the same Client Line Manager instance. In this way

several applications may use the same lines simultaneously. So when a call is established using a

TAPI application, the same call will be visible within SwyxIt!. A call can be initiated by the Outlook

AddIn and then be put on hold by TAPI.

The CLMgr connects to the server respective SIP proxy, handles calls and manages audio streams. All

other components are accessing the server through the CLMgr.

1.4 Methods and Events
The CLMgr provides a set of methods for call control, media streaming and configuration. The API

allows tasks like dialing, call hold, call transfer, establishing of a conference… The functions pub-

lished in the Client SDK allow nearly everything that can be done via SwyxIt! as well. The other way

Client Line Manager

Outlook
AddIn

Notes
AddIn

TSP

SwyxIt! Outlook Notes

TAPI

TAPI
Application

Server

SwyxIt! Client SDK

Last changed: 9/3/2018 5/17

round the CLMgr will send events to the client applications when anything important happens: incom-

ing calls, a call gets connected or disconnected, a speed dial state changes...

Most call related functions are handled asynchronous. This is merely like in old ship movies: The cap-

tain tells the mate: “full speed ahead”. The mate tells the cox: “full speed ahead”. The cox tells the en-

gineer: “full speed ahead”. The engineer finally pushes the button and confirms it to the cox and the

message queue goes back till the captain.

Example: When an incoming call is accepted in the SwyxIt! user interface, SwyxIt! calls the appropri-

ate CLMgr function. The CLMgr handles that task asynchronously and tells the server to accept the

call. When that request is confirmed by the server, the call gets accepted; the CLMgr connects the line,

starts the media streaming and tells SwyxIt! that the line state has been changed from “ringing” to “ac-

tive”. Finally SwyxIt! displays the line in connected state and updates the display.

The important message is: The implementation has to be aware that call related API calls are handled

asynchronously. When e.g. an invalid number is dialed, the dial function will return without error but

later on the line will get disconnected with an appropriate disconnect reason.

1.5 Lines, Selected Line & Line States
Within the line manager we have one CClientLineMgr object and multiple CClientLine objects. The

job of the CClientLineMgr object is reading and writing configuration, registration with the server or

SIP registrars, audio device handling, switching between lines… The CClientLine objects are handling

the individual calls. There is always one line selected (line in focus). The selected line is linked to the

audio device. In normal operation mode it is not possible having two or more active calls. The CCli-

entLineMgr will ensure that an active line is automatically put on hold when a different line becomes

active. A line is always in one of the following states, resembling the state of the corresponding call:

• Inactive: line is idle, no call

• HookOffInternal: outgoing call, hook or line clicked, handset off hook, internal dial tone is

played. Waiting for more digits.

• HookOffExternal: outgoing call, line is off hook and the public access prefix has been dialed

so far. Waiting for more digits.

Client Line Manager
(CLMgr.exe)

SwyxIt! Your App

Server

Methods

Event
s

Methods

Event
s

SwyxIt! Client SDK

Last changed: 9/3/2018 6/17

• Ringing: the line is signaling an incoming call

• Dialing: outgoing call, one or more digits have been dialed so far. Waiting for more digits or a

response from the server.

• Alerting: outgoing call, the called party (destination, peer) will hear ringing

• Knocking: outgoing call. This is a secondary call for the peer, the peer is already talking on

an other line.

• Busy: outgoing call, the destination is busy

• Active: incoming or outgoing call, logical and physical connection are established

• OnHold: incoming or outgoing call, the peer gets music on hold

• ConferenceActive: incoming or outgoing call, a conference with multiple participants has

been established.

• ConferenceOnHold: incoming or outgoing call, a conference with multiple participants has

been established but we have currently put the conference on hold. The conference partici-

pants will not hear music on hold.

• Terminated: incoming or outgoing call, the call has been disconnected actively or passively.

• Transferring: incoming or outgoing call, blind call transfer. When a call transfer between two

lines is initiated while the destination line is not yet connected, this is a blind call transfer. The

transfer source line will stay in state transferring while the transfer is still in progress. The

peer on that line will hear an alerting sound.

• Disabled: this is a special inactive state. Temporarily no calls are accepted on this line.

• DirectCall: incoming intercom call, the connection is established but the micro is muted. The

peer can talk to us.

CClientLineMgr CLine CLine CLine CClientLine

SwyxIt! / AddIn / TSP / Your Application…

Call Call Call

SwyxIt! Client SDK

Last changed: 9/3/2018 7/17

The following diagram displays a “simple” view of the line state machine. The diagram is not com-

plete but should give an idea how a SwyxIt! line works.

1.6 CClientLineMgr Methods
The CClientLineMgr object provides methods for registration, line selection and media streaming.

Inactive - 0

HookOff - 1

Dialing - 3

Busy - 5

OnHold - 8

ConferenceOnHold - 10

Ringing - 2

Alerting - 4

Knocking - 6

Active - 7

ConferenceActive - 9

Terminated - 11

HookOff

Dial
→ OnDialAcknowledge

HookOn

OnAlerting OnAlerting (2, call)

OnDisconnected (busy)
OnDisconnect (rejected)

HookOn

(DirectCall)
OnConnected

HookOn
(Disconnect (normal))

→ OnDisconnected (normal)

Hold
→ OnHold Activate

→ OnConnected

HookOn

OnConnected

OnConferenceInfo

OnConferenceInfo

Hold
→ OnHold

Activate
→ OnConnected

OnConnected

IncomingCall

HookOff
→ OnConnected

HookOn
Disconnect (reject)

→ OnDisconnected (rejected)

HookOn
Disconnect(cancelled)

→ OnDisconnected (cancelled)

JoinConference
→ OnDisconnected (joined)

TransferCall
ForwardCall

→ OnDisconnected (transferred)

ForwardCall
→ OnDisconnected (transferred)

SwyxIt! Client SDK

Last changed: 9/3/2018 8/17

Please note that the parameter types are depending on the used programming language and COM

wrapper technique. All details about the interfaces, structures, enums and ClientLineMgr events can be

found inside the attached Client SDK files (idl files, chm file).

SwyxIt! Client SDK

Last changed: 9/3/2018 9/17

2 Programming Guide

2.1 Creating Line Manager Object and Accessing Lines

2.1.1 VB Script

The following code show the instantiation of a line manager object and calling some methods from

VB script. When using VB 6 or VB script, you have to use the Dispatch methods (all methods where

the name starts with Disp, like DispSimpleDial, DispHookOff, DispHookOn...).

Dim PhoneLineMgr : Set PhoneLineMgr = Nothing

Dim PhoneLineFocus : Set PhoneLineFocus = Nothing

Create a line manager instance:
Set PhoneLineMgr = Wscript.CreateObject("CLMgr.ClientLineMgr")

Dial a number:
PhoneLineMgr.DispSimpleDial("001191")

Get the selected line:
Set PhoneLineFocus = PhoneLineMgr.DispSelectedLine

Hook on the selected line. This will terminate the call.
PhoneLineFocus.DispHookOn()

Clean up:
Set PhoneLineMgr = Nothing

Set PhoneLineFocus = Nothing

2.1.2 VB 6 (no longer tested)

With Visual Basic 6 the Client SDK can be added to a project using menu Project\References. Check

the library "CLMgr 2.0 Type Library". Afterwards the Object Browser will list all available objects

and methods for library CLMGRLib. Due to technical reasons you will see many more objects and in-

terfaces than you can use. From Visual Basic you can use the objects CClientLineMgr and CClient-

Line and its methods and properties starting with Disp (like DispHookOff). Only the object CClient-

LineMgr will be created by your application. CClientLine objects are not created directly, but you will

access the line by calling appropriate CClientLineMgr functions. The following example retrieves the

selected line and puts it on hold:
Public WithEvents PhoneLineMgr As CLMGRLib.ClientLineMgr

Set PhoneLineMgr = CreateObject("CLMgr.ClientLineMgr")

Public PhoneLineFocus As Object

Set PhoneLineFocus = PhoneLineMgr.DispSelectedLine

PhoneLineFocus.DispHold

For receiving line manager events with Visual Basic define a CClientLineMgr object:

Public WithEvents PhoneLineMgr As CLMGRLib.ClientLineMgr

Create an object:

Set PhoneLineMgr = CreateObject("CLMgr.ClientLineMgr")

Add the following function to your code that will receive the events. The meaning of parameter param

is explained in file “CLMgrPubTypes.h”, included in the SDK.

SwyxIt! Client SDK

Last changed: 9/3/2018 10/17

Sub PhoneLineMgr_DispOnLineMgrNotification(ByVal msg As Long, ByVal

param As Long)

 Select Case msg

 Case 0 ‘PubCLMgrLineStateChangedMessage

 Case 1 ‘PubCLMgrLineSelectionChangedMessage

 Case 2 ‘PubCLMgrLineDetailsChangedMessage and so on

End Select

End Sub

2.1.3 VB .Net Simple

Please refer to sample “Visual Studio.Net VB Simple”.

Add a reference to COM component “CLMgr 2.0 Type Library”.

Import the library:
Imports CLMGRLib

Declare and create a line manager object:
Private WithEvents MyClmgr As New ClientLineMgrClass

Declare an event handler that receives line manager events from that MyClmgr object. This method

will be called when the line manager sends a message to your application:
Private Sub clmgr_PubOnLineMgrNotification(ByVal msg As Integer, ByVal

param As Integer) Handles MyClmgr.PubOnLineMgrNotification

That method will forward the event to the form by calling Invoke:
Me.Invoke(Me.myDelegate, New Object() {msg, param})

This results in a thread safe calling of
Public Sub MyLineManagerMessageHandler(ByVal msg As Integer, ByVal param As

Integer)

This is required for accessing the form from the COM event thread.

The parameter msg will be the line manager event (see enum PubCLMgrMessages in file

“CLMgrPubTypes.h”, included in the SDK). The parameter param depends on the message; please

refer to the comments within “CLMgrPubTypes.h”.

Get the selected line and do something with it:
Private SelectedLine As ClientLine

Dim i As Integer

SelectedLine = MyClmgr.DispSelectedLine
i=SelectedLine.DispState

SelectedLine.DispHookOff()

SelectedLine.DispHookOn()

2.1.4 C# .Net Simple

This is similar to VB .Net. Please refer to the provided sample code “Visual Studio.Net 2005 C# Sim-

ple”.

Add a reference to COM component “CLMgr 2.0 Type Library”.

SwyxIt! Client SDK

Last changed: 9/3/2018 11/17

Import the library:
using CLMGRLib;

Declare and create a line manager object:
private ClientLineMgrClass MyCLMgr = new ClientLineMgrClass();

The sample code contains a class “ClientSdkEventSink”.

Declare an event handler that receives line manager events from that MyClmgr object.
private ClientSdkEvents.ClientSdkEventSink MyEventSink = new

ClientSdkEvents.ClientSdkEventSink();

In the form load method, link this event handler object to your event handler method of your form:
MyEventSink.Connect(pCLMgr, this, new

ClientSdkEvents.LineManagerMessageHandler(OnLineManagerMessage));

This method will be called when the line manager sends a message to your application:
private void OnLineManagerMessage(ClientSdkEvents.ClientSdkEventArgs e)

The parameter e will be the line manager event with the properties e.Msg (see enum PubCLMgrMes-

sages in file “CLMgrPubTypes.h”, included in the SDK) and e.Parameter. “Parameter” depends on the

message; please refer to the comments within “CLMgrPubTypes.h”.

Get the selected line and do something with it:
private ClientLine SelectedLine;

int i;

SelectedLine = (ClientLine)MyCLMgr.DispSelectedLine;

i=SelectedLine.DispState;

SelectedLine.DispHookOff();

SelectedLine.DispHookOn();

Don’t forget to release the event sink object when the form is closed:
MyEventSink.Disconnect();

2.1.5 C++

For Visual C++ add the files CLMgrPubTypes.h, CLMgrPubTypes.c und CLMgrPub.idl to your pro-

ject. You will create a Client Line Manager object (CLSID_ClientLineMgr) and use its interfaces like

IClientLineMgrPub or IClientLineMgrPub2. The Client Line Manager object provides methods for

accessing lines. Using the line interface IClientLinePub you may initiate actions on a line or retrieve

line details. This will be shown in the first example "Visual C++ Simple". Please refer to the provided

sample code. Please pay attention that you can receive line manager events as either window messages

or COM events. Most C++ samples will show both ways. There are different build targets for using

window messages or COM events. The related event handling code is enclosed in #ifdef blocks. The

advantage of window messages is that you will receive the events within your main message pump.

SwyxIt! is using that method as well. Receiving COM events in C++ is a little bit more complicated.

The sample code shows how to do this using the Active Template Library, connection points and

event sinks.

2.2 Linking Media Streaming of Lines in Power Dial Mode
The following example in VB script shows calling out on two lines and linking the media streaming of

the two lines. Then you have to wait till both lines are disconnected later on:

SwyxIt! Client SDK

Last changed: 9/3/2018 12/17

Option Explicit

Dim PhoneLineMgr : Set PhoneLineMgr = Nothing

Dim PhoneLine1 : Set PhoneLine1 = Nothing

Dim PhoneLine2 : Set PhoneLine2 = Nothing

Dim errval, DialDigits, Pos, i

Dim sLink

Set PhoneLineMgr = Wscript.CreateObject("CLMgr.ClientLineMgr") : CheckError

Set PhoneLine1 = PhoneLineMgr.DispGetLine(0)

Set PhoneLine2 = PhoneLineMgr.DispGetLine(1)

sLink=PhoneLineMgr.DispCreateMediastreamingLink()

PhoneLine1.DispSetMediastreamingLink(sLink)

PhoneLine2.DispSetMediastreamingLink(sLink)

PhoneLine1.DispHookOff()

PhoneLine1.DispDial("12345")

PhoneLine2.DispHookOff()

PhoneLine2.DispDial("67890")

Wscript.Sleep 1000

While((PhoneLine1.DispState>0) And (PhoneLine2.DispState>0))

Wscript.Sleep 1000

Wend

PhoneLine1.DispSetMediastreamingLink("")

PhoneLine2.DispSetMediastreamingLink("")

PhoneLineMgr.DispDeleteMediastreamingLink(sLink)

Set PhoneLineMgr = Nothing

Set PhoneLine1 = Nothing

Set PhoneLine2 = Nothing

Sub CheckError

Dim message, errRec

If Err = 0 Then Exit Sub

message = Err.Source & " " & Hex(Err) & ": " & Err.Description

Fail message

End Sub

Sub Fail(message)

Wscript.Echo message

Wscript.Quit 2

End Sub

So when you are using power dial mode, the lines are fully operational, only that the media streaming

is not linked at all to the local sound device. But when you connect the media streaming of two lines

(using SwyxIt! 6.02 or later), the line manager will link the media streaming of the two participants.

When line 1 gets early tones, the peer on line 2 will hear it. When line 2 is connected to a script and

gets any music on hold and line 1 is connected to the external party, the external party will hear the

music on hold.

The media streaming is then routed through the line manager.

The drawback is: you need to keep the two lines active on the power dial client. You could initiate a

transfer later on (when you are sure that the external party is connected to the agent) but this would

result in a short interruption of the call. So best practice would be to wait till both lines are discon-

nected (as shown in my sample code).

My favorite view of this: It is like "Fräulein vom Amt" sitting in front of a huge switchboard. You can

have multiple calls on the lines and patch the connections independently from the call states.

SwyxIt! Client SDK

Last changed: 9/3/2018 13/17

There is no build in maximum limit of lines in power dial mode. So you can call DispSetNumberOfLi-

nes(500) and have 500 lines. But have in mind that you then might have 500 active connections with

250 media streaming links. You have to test what is possible with a given hardware.

You can link the media streaming of more than two lines as well. For more information please refer to

sample “Visual Studio.Net 2005 C# PowerDialTest”.

2.3 Sample Code
The SDK contains several sample projects. You will need Visual Studio for opening the project files.

2.3.1 Visual Basic Script

This sample just shows how to dial a phone number via script.

2.3.2 Visual C++ ATL PlugIn

This sample explains the implementation of a Line Manager Plugin providing name resolution for

SwyxIt! The code is based on the Active Template Library.

It implements a Client Line Manager PlugIn that provides name resolution for SwyxIt!. For unknown

peer numbers the Client Line Manager will ask all installed PlugIns for a matching name resolution.

So you will be able to provide name resolution based on your own database application. This client too

will not register with the SwyxServer.

For a customization one has to replace the GUIDs and friendly class names PlugInSample.MyResolver

etc. in the files PlugInSample.idl and MyResolver.rgs with new GUIDs and names in order to avoid

conflicts with other 3rd party applications based on the Client SDK. But never ever change any GUID

from the files CLMgrPub.idl and CLMgrPubTypes.c!

In file PlugInSample.cpp the functions for registration and deregistration of the PlugIn are imple-

mented. In order to be loaded by the Client Line Manager, the PlugIn writes its class ID into the Line

Managers registry HKLM\SOFTWARE\Swyx\Client Line Manager\CurrentVersion\Op-

tions\PlugIns\{GUID}

The actual PlugIn object CMyResolver is defined and declared in the files MyResolver.cpp and

MyResolver.h. The PlugIn object implements the interfaces IClientAddInLoader, IClientRe-

solverAddIn and IClientLineMgrEventsDisp. The interface IClientAddInLoader will be used by the

Line Manager on loading and releasing the PlugIn, the interface IClientResolverAddIn provides name

resolution. The interface IClientLineMgrEventsDisp finally receives the Line Manager events.

When loading the PlugIn, the Line Manager calls the functions IClientAddInLoader::Initialize, IClien-

tAddInLoader::GetName and IClientAddInLoader::GetVersion. Before releasing the interface IClien-

tAddInLoader and unloading the PlugIn, the Line Manager calls the method IClientAddInLoader::Un-

Initialize. The PlugIn has then a chance for cleaning up memory and other resources.

In the example implementation of CMyResolver::Initialize the PlugIn registers an event sink towards

the Line Manager for receiving events. The Line Manager interface pointer pIClientLineMgrPub will

be stored in the global interface table. Using its cookie m_dwCLMgrCookie the pointer will be re-

trieved on demand from the global interface table and automatically marshalled into the current thread

context. You will find the used helper functions in the files githelp.cpp and githelp.h. This effort is re-

quired as soon as a COM interface pointer is used from multiple threads. GetName are GetVersion un-

spectacular. In the implementation of CMyResolver::UnInitialize the event sink will be released, that's

always a good idea.

Line Manager events drop in in function CMyResolver::DispOnLineMgrNotification. Your PlugIn

could e.g. write journal entries into a database or trigger a database application for popping up contact

information.

In CMyResolver::GetPreferredNumberStyle the PlugIn can ask for a phone number format to be used

for name resolution. Usually one would use the format PubCLMgrNumberStyleFull (like

0004923147770 or 0023147770). For any number to be resolved the Client Line Manager will call

CMyResolver::ResolveNumber.

SwyxIt! Client SDK

Last changed: 9/3/2018 14/17

2.3.3 Visual C++ Call Log

This is a simple MFC application that displays a simple call log. A checkbox allows to accept all in-

coming calls automatically. This client runs besides SwyxIt! and does not log on nor off. Here too

there are two build targets "Win32 Debug Using Event Sink" and "Win32 Release Using Event Sink"

showing both usage of connection points and COM events. The class CCLMgrEventSink may be used

modified in your project.

2.3.4 Visual C++ PlayToRtp

Dialog based MFC Application, allowing the recording and playback of voice stream. As “Play File”

please choose a wave file in format PCM, 8000 Hz, 16 bit, mono. The playback is started by pressing

“Start”. The file can be played in a loop, the pause between loops can be configured. The playback is

heard only by the peer.

This sample does not work in power dial mode.

2.3.5 Visual C++ Simple

Dialog based MFC Application that displays information about the selected line and allows simple call

control. The sample includes log on and log off code, so this sample must not run along with SwyxIt!

but instead of SwyxIt!. Logon and logoff should only be used via SDK when your application intends

to run stand alone (without SwyxIt! running aside).

2.3.6 Visual C++ WakeUp

Example for establishing bulk calls using SwyxIt! in power dial mode.

The client has to be switched to power dial mode via registry:

• No implicit line selection

• If a line is selected explicitly, the previous selected line does not become disconnected on hold

• The mediastreaming is not linked to the local sound device

• No local, line related sounds are played (ringing, dialing, alerting, …)

• Hook off/on per local handset will be ignored

Enable the power dial mode using reg file "PowerDialerMode.reg". The reg file will set as well the

key "CancelBlindTransferOnVoicemail" to 0 for allowing blind call transfer (forward) to a voicemail

announcement. Within SwyxIt! one should disable pop up during connection for avoiding annoying

pop ups.

The sample allows dialing on all available lines simultaneously. The phone call jobs are read from file

JobsToDo.txt. Every line corresponds to a call to do, described by three strings, separated by ';': The

first string is the number to be dialed. On connect the call will be transferred to the number given in

the second string. The third string is a counter for the retries. When clicking on start in the sample ap-

plication, the dialing will be initiated after a short timeout. Clicking on stop will abort the process. In a

second file all successful calls will be listed. The file JobsToDo.txt lists all not yet successful call and

the current number of retries.

When trying this sample on a productive server, please be aware that it is a really good stress test tool.

For real scenarios one should add some Sleep() calls in order to give the server time.

2.3.7 Visual Studio.Net C# PowerDialTest

This sample is intended to run on SwyxIt! in power dial mode. Please note that it sets the line count to

50. The actual line count can be higher than the number of lines visible on the skin.

Please note the class “ClientSdkEventSink” and how it is used to receive messages from the line man-

ager thread safe.

The project was used for testing the speed of switching on media streaming between two clients. So it

demonstrates how to handle media streaming in power dial mode. In fact the real test scenario was:

Run SwyxIt! Now in power dial mode. Configure two SIP accounts for your local SwyxServer. Dial

out on behalf of account 1 to the number / URI of account 2. So our call will come in on a second line

SwyxIt! Client SDK

Last changed: 9/3/2018 15/17

of the same client. When you then pickup the call, you can measure how long it takes to establish the

voice connection by sending out a test sound on one line and record it on the other line. Please don’t

use this code to claim support incidents against Swyx ;-)

Outgoing Call: Please enter the dial number. In case that you are using SwyxIt! Now in power dial

mode, you have to enter the caller id as well. The “caller id” is then used to select the SIP account that

is used for placing the outgoing call. If checkbox “Play Sound” is checked, the sample will play a test

sound CallingPartyTestsignal1000Hz10Seconds.wav toward the destination as soon as the line be-

comes active. This resembles a user that immediately starts speaking when the line becomes visibly

active. The incoming media streaming for this call will be recorded. For this you can see in the sample

code that on line a media streaming link is created and DispRecordSoundFile is called on the line.

Press “Start call” for placing the outbound call.

If the SIP accounts are configured correctly (as discussed: Use SwyxIt! Now in power dial mode, two

SIP accounts), the call will come in on a second line. Accept the call by pressing “Accept Call”. The

sample will then display the time difference between accepting the incoming call and receiving the

“connect” message on the outgoing call on the first line. This is the time difference for establishing a

logical connection. If “Play Sound” is checked, the application will play a test sound CalledParty-

Testsignal2000Hz10Seconds.wav towards the caller. This resembles a user that immediately starts

speaking after accepting a call. The incoming media streaming for this call will be recorded.

Independent from the just described test scenario, the other buttons show how to link the media

streaming of multiple lines to each other, playback sound files in power dial mode or record voice in

power dial mode.

When looking into the code itself you will find as well an example of handling incoming DTMF.

2.3.8 Visual Studio.Net C# Simple

Simple application in C# showing dialing and receiving events. Nevertheless pay attention to the code

comments for avoiding nasty problems in your own code. Please note the class “ClientSdkEventSink”

and how it is used to receive messages from the line manager thread safe.

2.3.9 Visual Studio.Net VB Simple

Very simple application in VB showing dialing and receiving events. Nevertheless pay attention to the

code comments for avoiding nasty problems in your own code. Please note the thread safe event han-

dling in method “clmgr_PubOnLineMgrNotification”.

2.3.10 Visual Studio.Net C# IpPbxMPC

This example is a complete C# application named IpPBX Media Player Controller. It can be used to

control a media player such as Winamp or Windows Media Player. Whenever not all SwyxIt! lines are

inactive IpPBXMPC sends the configured player a "pause" command. When all SwyxIt! lines become

inactive again, the player gets an "unpause" command from IpPbxMPC. Alternatively the active state

of one or more speed dial keys can be used, too.

2.3.11 Visual Studio.Net C# Plugin

This example demonstrates how to implement a line manager PlugIn using C#. For more information

please refer to the public Swyx Forum Blog:

http://www.swyx-forum.com/community/Blogs/tabid/55/EntryId/438/SwyxIt-Full-Text-Search-Plug-

in-in-C.aspx

http://www.swyx-forum.com/community/Blogs/tabid/55/EntryId/438/SwyxIt-Full-Text-Search-Plug-in-in-C.aspx
http://www.swyx-forum.com/community/Blogs/tabid/55/EntryId/438/SwyxIt-Full-Text-Search-Plug-in-in-C.aspx

SwyxIt! Client SDK

Last changed: 9/3/2018 16/17

3 Reference

3.1 Client SDK Methods
The reference for all supported interfaces and its methods is given in the included file

“CLMgrPub.idl”. The methods and its parameters are documented within that file. Even if you are

programming in VB or C# you should read this file as a reference for understanding the parameters.

Alternatively you can take a look into the attached .chm helpfile, which is strongly recommended, be-

cause of its easy to use index, searchoption and hyperlink functionality.

The file “CLMgrPubTypes.h” contains the enumerations for all supported events, line states, and dis-

connect reasons.

The file “CLMgrPubTypes.c” contains defines for some Class IDs that are required for linking C++

projects.

3.2 Supported TAPI Features
The Microsoft TAPI provides an upper level interface to be used by TAPI client applications like Win-

dows Dialer or CRM software. Telephony applications like SwyxIt! integrate into TAPI by imple-

menting a so called TAPI Service Provider (TSP). A TSP is a sort of driver that forwards TAPI func-

tion calls to the 3rd party telephony hardware or software components.

The SwyxIt! TSP supports TAPI 2.x. Nevertheless it can be used by TAPI 3.x client applications as

long as no functions are used that are not supported by TAPI 2.x. SwyxIt! supports basic call handling

including transfer and conference, there is no access to media streaming.

Please note that the “SwyxIt! TAPI Service Provider” provides some configuration that is accessible

using the telephony control panel applet. Especially you can configure…

• A fixed dial prefix for outgoing calls (if you need this for any TAPI application that does not

dial canonical and does not use the Windows locations neither)

• Caller ID format: the format that is used for reporting phone numbers towards TAPI. Please

use the format that is appropriate for your application. For DATEV e.g. you would choose

plain or full. For ACT! you would choose plain.

• “Signal outbound calls”: By default the TSP does only signal incoming calls to the TAPI. So

the TAPI would not be aware of outbound calls that are started using SwyxIt!. If you need the

visibility of all outbound calls to your TAPI application, please check this checkbox.

SwyxIt! supports the following TAPI functions:

• lineOpen

• lineClose

• lineMakeCall

• lineDial

• lineAnswer

• lineHold

• lineUnhold

• lineSwapHold

• lineSetupTransfer

• lineBlindTransfer

• lineCompleteTransfer

• lineSetupConference

• linePrepareAddToConference

SwyxIt! Client SDK

Last changed: 9/3/2018 17/17

• lineAddToConference

• lineRemoveFromConference

• lineDrop

• lineCloseCall

• lineGetAddressCaps

• lineGetAddressStatus

• lineGetCallInfo

• lineGetCallStatus

• lineGetDevCaps

• lineGetID

• lineGetLineDevStatus

