

Audio Device Plugin Development

Swyx Solutions AG
Joseph-von-Fraunhofer-Str. 13a

44227 Dortmund (Germany)

Status: Document in process, unfinished

Page Count: 52
Version: 1
Created: 08.08.11 by: pd
Modified: 12.12.11 14:22 by: pd

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 2/52

1 Introduction ... 4

1.1 The purpose of this document ... 4

1.2 Target audience .. 4

2 Overview .. 5

2.1 What is a device Plug-In? ... 5

2.2 System Description ... 5

2.3 SwyxIt! ... 6

2.4 Client Line Manager .. 7

2.5 Description of AudioModes ... 7

2.6 Description of SoundChannels ... 9

3 Starting your own Audio Device Plug-In .. 10

3.1 Overview .. 10

Native COM Audio Device Plug-In .. 10

3.2 Managed Audio Device Plug-In using the Interop assemblies.. 11

3.3 Managed Audio Device Plug-In using the IpPbxAudioDevicePluginAPI 11

4 Interfaces ... 12

4.1 IAudioDeviceCollection Interface ... 12

4.2 IAudioDevice Interface .. 16

4.3 _IAudioDeviceEvents Interface .. 30

5 AudioVolumeControl COM-Component ... 36

5.1 IAudioVolumeControlCollection Interface .. 36

5.2 IAudioVolumeControl Interface ... 39

6 Appendix .. 46

6.1 Sequence diagrams ... 46

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 3/52

Change Log
No Date Who Description

1 08.08.11 PD Created.
2
3

24.08.11
12.12.11

TA
PD

Modified.
Modified (embedded sequence diagrams)

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 4/52

1 Introduction

1.1 The purpose of this document

Since version 2011 R2 of SwyxWare, Swyx is providing a new interface to create your own device
plugin for SwyxIt!. That enables Manufacturers of audio devices (and of course other interested
software developers) to integrate their own devices easily with SwyxIt!.

It is the task of this document to give a firm introduction in the possibilities and a documentation for
the development of your own Audio Device Plugin.

1.2 Target audience

This document is intended to all software developers who need to create their own plugin for a par-
ticular audio device in SwyxIt!. It is designed to be your guideline throughout the development pro-
cess.

To take full advantage of that document, you should be familiar with C++ / COM (ATL) and optional:
.Net / C# / VB.Net.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 5/52

2 Overview

2.1 What is a device Plug-In?

Technically spoken a device plug-in is a COM server (or a managed .Net assembly) which provides a
specific interface for use with the Swyx Client Line Manager application. A device plug-in communi-
cates with one or more hardware audio devices and acts as a translator between Client Line Manager
and these devices. The only constraint for the device you want to support with your own Audio De-
vice Plug-In: It must be visible to the Windows operating system, so it must provide the default Win-
dows Audio Device interfaces and sound channel ID’s.

This documentation is about implementing your own device Plug-In for Client Line Manager and
SwyxIt!.

2.2 System Description

In order to create your own plugin, you should know about the context of its instantiation and where
it is called from. So let’s take a closer look at the system architecture.

Which software components are involved when dealing with Audio Device Plug-Ins?

 SwyxIt! (User Interface)

 Client Line Manager (Management of Communication Lines, Devices and Audio Mode Han-
dling)

 Device Plug-Ins (providing device specific logic to Client Line Manager through a well-defined
interface)

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 6/52

This graphic shows the relationship of the components in more detail:

2.3 SwyxIt!

SwyxIt! is the application where the User interacts with the system – this is the place where the User
manages his communication and where he configures his communication devices and Audio Mode
settings.

SwyxIt! is communicating with the Client Line Manager component via COM. The Client Line Manager
is started / stopped by SwyxIt!.

SwyxIt! enables the User to select and configure the attached devices (e.g. Plug-In provided devices).
The User is also able to assign a specific device to a dedicated Audio Mode. These settings are done
via the “Local Settings” Dialog which is discussed throroughly in the SwyxIt! User Manual.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 7/52

2.4 Client Line Manager

The Client Line Manager process supports SwyxIt! in background. The Client Line Manager loads and
manages the registry configured Audio Device Plug-Ins and handles the real connected devices
properly. It is also running Swyx defined algorithms bound to specific Audio Modes.

The lifetime of an Audio Device Plug-In instance is bound to the lifetime of the Client Line Manager
process.

2.4.1 Registry settings of Client Line Manager (regarding Plug-Ins)

How is the Client Line Manager knowing about available plug-ins?

First, all COM Device Plug-Ins need to be registered to the Windows operating system.

The Client Line Manager reads the available plug-ins by enumerating the subkeys of

HKEY_LOCAL_MACHINE\SOFTWARE\[Wow6432Node]\Swyx\Client Line Manag-

er\CurrentVersion\Options\AudioDevicePlugIns

To enable your plug-in you have to add a subkey with the version independent ProgID of your im-
plementation of IAudioDeviceCollection as keyname. The Client Line Manager instantiates your col-
lection-object via CoCreateInstance and this keyname as ClassID.

Important information: In each device sub key you can manually enable or disable the plug-in with a
new Value “Enabled” of type DWORD. If the value of key “Enabled” equals 0, the plug-in will not be
loaded by Client Line Manager. If it is not 0 (or if the value is not existing) the plug-in is enabled and
will be loaded when Client Line Manager starts.

2.5 Description of AudioModes

An Audio Mode is (simply spoken) the current communication and audio device configuration of
SwyxIt!. It combines the used devices with specific settings and a dedicated workflow.
The user can configure the audio devices for use with the following audio modes:

Handset Earphone device, Speaker and Mic

Headset Headset device, Speaker and Mic

Handsfree Speaker and Handsfree Mic

Open listening Additional Speaker

Ringing Speaker or Ringer

This audio modi are for GUI purposes only!

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 8/52

1 SwyxIt! AudioMode Device configuration

For developing purposes the AudioDevicePlugin-Library defines the enumeration AudioMode:

Handset Earphone, render and capture.
Best matching device formfactor: Handset

Headset Headset, render and capture
Best matching device formfactor: Headset

Handsfree Handsfree, render and capture
Best matching formfactor: Speaker and Sp. Mic

Generic Used, if Handset, Headset or Handsfree does not
match or don’t know.

Idle No audio mode active, but be ready to play ring-
ingtones!

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 9/52

2.6 Description of SoundChannels

During the development of your own Plug-In, you will get in touch with the term „SoundChannel“.

First you have to distinguish between logical soundchannels as defined by the enumeration Sound-
Channel of the Typelibrary and physical soundchannels as provided by your audio device.

Second you have to map each logical soundchannel to the best matching physical soundchannel of
your device. It is up to you and your plugin, to make this decision!

Once the Client Line Manager has loaded your plugin, your plugin will be asked for the supported log-
ical soundchannels frequently in accordance to the users’s configuration.

Logical soundchannel Physical soundchannel

SoundChannelCapture Input channel. Map to physical soundchannel:

 Handset mic, if AudioMode Handset is requested

 Headset mic, if AudioMode Headset is requested

 Handsfree mic, if AudioMode Handsfree is requested

 Any mic, if AudioMode Generic is requested

 No soundchannel, if AudioMode Idle is requested

SoundChannelRender Output channel. Map to physical soundchannel:

 Handset speaker, if AudioMode Handset is requested

 Headset speaker, if AudioMode Headset is requested

 Handsfree speaker, if AudioMode Handsfree is requested

 Any speaker, if AudioMode Generic is requested

 No soundchannel, if AudioMode Idle is requested

SoundChannelSpeaker Output channel for open listening. Map to physical soundchannel:

 No soundchannel, if AudioMode Handset is requested

 No soundchannel, if AudioMode Headset is requested

 Handsfree speaker, if AudioMode Handsfree is requested

 Any speaker, if AudioMode Generic is requested

 No soundchannel, if AudioMode Idle is requested

SoundChannelRinging Output channel for ringing sound. Map to physical soundchannel:

 Speaker

For your convenient you may use the AudioVolumeControl.DLL in order to adjust the volume of the
desired soundchannels or you may use your own implementation of volume control.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 10/52

3 Starting your own Audio Device Plug-In

3.1 Overview

Your audiodevice plugin must be a COM-Class-Library with a GUID and have to contain the following
COM-Objects:

MyAudioDeviceCollection

 GUID

 Version independent ProgID

 Singleton

 Creatable

 Implements Interface: IAudioDeviceCollection

MyAudioDevice

 GUID

 NON creatable, accessible only via IAudioDeviceCollection

 Create one for each physical Audio Device

 Implements Interface: IAudioDevice

 Source interface: IAudioDeviceEvents

When starting to develop your own Audio Device Plug-In you need to decide which road you want to
go. You can select between three major ways:

1. Creating a native COM Audio Device Plug-In using the COM interfaces described in this doc-
ument.

2. Creating a managed Audio Device Plug-In using the Interop assemblies providing the COM in-
terfaces as managed interfaces.

3. Creating a managed Audio Device Plug-In using the IpPbxAudioDevicePluginAPI assembly.

Let’s have a closer look at these three possibilities and their pro and contra points.

Native COM Audio Device Plug-In

This is the hardest but most flexible way to create your own plug-in. Just create a COM server im-
plementing the needed interfaces and handle all the calls by yourself. You need to have deep
knowledge in COM and COM connection points.

You will find all needed components (e.g. idl files, tlb files and headers) in the AudioDevicePluginSDK
solution delivered by Swyx. The documentation for the needed interfaces can be found in chapter 3
of this document.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 11/52

3.2 Managed Audio Device Plug-In using the Interop assemblies

You can create a managed assembly which provides an implementation of the needed COM interfac-
es. Swyx delivers two Interop assemblies which will make your life easier when choosing this ap-
proach.

You will find the interfaces described in chapter 3 of this document inside the Inter-
op.AudioDevicePlugin.dll and Interop.AudioVolumeControl.dll assemblies delivered
with the AudioDevicePluginSDK solution. Just reference them in your class library project and start
coding.

3.3 Managed Audio Device Plug-In using the IpPbxAudioDevicePluginAPI

This is the easiest way to create your own Audio Device plug-in. Swyx delivers a managed assembly
which provides two classes which you can derive from to create your own Plug-In logic:

 AudioDeviceCollection

 AudioDevice

These two classes provide everything you need to get started. The AudioDevice class provides a de-
fault implementation of an Audio Device, providing one Render and one Capture sound channel. It is
also handling the volume level control between Windows and your device (Windows XP and >= Vista
only). You just have to implement a few abstract methods to provide device specific information.

If you don’t want to use the internal volume control of the AudioDevice class, just override the virtual
SetVolume method and handle the call yourself.

You just need to reference IpPbxAudioDevicePluginAPI.dll assembly to your class library project to
get started. The classes a throroughly documented in the file “IpPbxAudioDevicePluginAPI
Document.chm” – in combination with this file you should get fast results.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 12/52

4 Interfaces

Let’s start with a development documentation of the interfaces you need to implement if you want
to create your own Audio Device Plug-In for SwyxIt!.

4.1 IAudioDeviceCollection Interface

Every Audio Device Plug-In needs to implement IAudioDeviceCollection. The Client Line Manager in-
stantiates this class to get the instances of IAudioDevice for each connected device. The IAudi-
oDeviceCollection provides a simple collection interface.

The IAudioDeviceCollection interface inherits from IDispatch interface. IAudioDeviceCollection also
has the following Properties and Methods:

4.1.1 Properties and Methods

4.1.1.1 IAudioDeviceCollection::_NewEnum Method

The _NewEnum method returns an collection of IAudioDevice instances as an IEnumVARIANT.

Syntax

 [propget, restricted, id(DISPID_NEWENUM)]
 HRESULT _NewEnum(
 [out, retval] IUnknown** pVal
);

Return Value

If the method succeeds, it returns S_OK.

http://msdn.microsoft.com/en-us/library/dd318520(v=vs.85).aspx

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 13/52

4.1.1.2 IAudioDeviceCollection::Item Method

The Item method returns the IAudioDevice instance with the specified index.

Syntax

 [id(DISPID_VALUE)]
 HRESULT Item(
 [in] VARIANT index,
 [out, retval] VARIANT* pVariant
);

Parameters

index [in]

 The index of the requested item in collection.

pVariant [out, retval]

 The instance of IAudioDevice with the specified index.

Return Value

If the method succeeds, it returns S_OK.

Remarks

If parameter index is greater as or equal to the value given by Count() method, the method will re-
turn an error.

4.1.1.3 IAudioDeviceCollection::Count Method

The Count method returns the current count of items in the IAudioDeviceCollection.

Syntax

 [propget, id(1)]
 HRESULT Count(
 [out, retval] long *pVal
);

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 14/52

Parameters

pVal [out, retval]

 The current count of items in the IAudioDeviceCollection.

Return Value

If the method succeeds, it returns S_OK.

4.1.1.4 IAudioDeviceCollection::PluginVersion Property

The PluginVersion property returns the version of the plug-in as a string.

Syntax

 [propget, id(2), helpstring("property PluginVersion")]
 HRESULT PluginVersion(
 [out, retval] BSTR* pVal
);

Parameters

pVal [out, retval]

 The version of the plug-in.

Return Value

If the method succeeds, it returns S_OK.

4.1.1.5 IAudioDeviceCollection::PluginFriendlyName Property

The PluginFriendlyName property returns a friendly name of the plug-in.

Syntax

 [propget, id(3), helpstring("property PluginFriendlyName")]
 HRESULT PluginFriendlyName(
 [out, retval] BSTR* pVal
);

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 15/52

Parameters

pVal [out, retval]

 The version of the plug-in.

Return Value

If the method succeeds, it returns S_OK.

4.1.1.6 IAudioDeviceCollection::Initialize Method

The Initialize method is called by Client Line Manager after the plug-in was loaded. The method is
called before any enumeration of your IAudioDevice instances starts, so you can initialize everything
you need for your Plug-In’s environment in the implementation of that function.

Syntax

 [id(4), helpstring("Initialize")]
 HRESULT Initialize(
 [in] BSTR bstrRegKey
);

Parameters

bstrRegKey [in]

 This is the registry key of the plug-in. It can be used to read out plug-in specific information.

Return Value

If the method succeeds, it returns S_OK.

Remarks

The parameter “bstrRegKey” is the key to your device Plug-In Registry entry, so you are able to read
out your own configuration for the Plug-In from the corresponding registry key here. See chapter
2.4.1 for the registry settings Client Line Manager is using – the setup of your Audio Device Plug-In
can write configuration data used by your plug-in to that key.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 16/52

4.1.1.7 IAudioDeviceCollection::DeviceChangedEvent Method

The DeviceChangedEvent method is called by Client Line Manager whenever the Windows defined
WM_DEVICE_CHANGED occurs, so a Plug-In is able to handle a change in the known device list of
Windows.

Syntax

 [id(5), helpstring("DeviceChangedEvent")]
 HRESULT DeviceChangedEvent();

Return Value

If the method succeeds, it returns S_OK.

4.1.1.8 IAudioDeviceCollection::UnInitialize Method

The UnInitialize method is called by Client Line Manager before the plug-in is freed. Within this
method call you should clean up every resource used by your plug-in.

Syntax

 [id(6), helpstring("UnInitialize")]
 HRESULT UnInitialize();

Return Value

If the method succeeds, it returns S_OK.

4.2 IAudioDevice Interface

Provides information and methods to the Client Line Manager describing the Audio Device you want
to integrate.

The IAudioDevice interface inherits from IDispatch interface. IAudioDevice also has the following
Properties and Methods:

http://msdn.microsoft.com/en-us/library/dd318520(v=vs.85).aspx

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 17/52

4.2.1 Properties and Methods

4.2.1.1 IAudioDevice::IsOpen Method

The IsOpen property tells the Client Line Manager if the Audio Device Plug-In is open (and ready) or
not.

Syntax

 [propget, id(1), helpstring("property IsOpen")]
 HRESULT IsOpen(
 [out, retval] BOOL* pVal
);

Return Value

TRUE if the Audio Device Plug-In is ready to use, FALSE otherwise.

4.2.1.2 IAudioDevice::Open Method

The Open method is called by Client Line Manager to open the specific Audio Device. It is also called
when the current AudioMode changes.

Syntax

 [id(2), helpstring("method Open")]
 HRESULT Open();

Return Value

If the method succeeds, it returns S_OK.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 18/52

4.2.1.3 IAudioDevice::Close Method

The Close method is called by Client Line Manager to close the specific Audio Device.

Syntax

 [id(3), helpstring("method Close")]
 HRESULT Close();

Return Value

If the method succeeds, it returns S_OK.

Remarks

After the Close Method has been called, no events should be fired by Audio Device Plug-In until it is
opened via the Open Method again.

4.2.1.4 IAudioDevice::VendorID Property

The VendorID property returns the device specific Vendor ID.

Syntax

 [propget, id(6), helpstring("property VendorID")]
 HRESULT VendorID([out, retval] ULONG* pVal);

Return Value

The device specific VendorID.

Remarks

If you do not want to provide a Vendor ID you can safely return 0 here.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 19/52

4.2.1.5 IAudioDevice::ProductID Property

The ProductID property returns the device specific Product ID.

Syntax

 [propget, id(7), helpstring("property ProductID")]
 HRESULT ProductID([out, retval] ULONG* pVal);

Return Value

The device specific ProductID.

Remarks

If you do not want to provide a Product ID you can safely return 0 here.

4.2.1.6 IAudioDevice::FirmwareVersion Property

The FirmwareVersion property returns the current Version of the Firmware installed on the device.

Syntax

 [propget, id(8), helpstring("property FirmwareVersion")]
 HRESULT FirmwareVersion([out, retval] BSTR* pVal);

Return Value

The version of the installed Firmware on the device.

Remarks

If you do not want to provide a Firmware version you can safely return an empty string here.

4.2.1.7 IAudioDevice::FriendlyName Property

The FriendlyName property returns a friendly name of the device.

Syntax

 [propget, id(9), helpstring("property FriendlyName")]
 HRESULT FriendlyName([out, retval] BSTR* pVal);

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 20/52

Return Value

A friendly name of the device. This name is used on the SwyxIt! UI for your device.

4.2.1.8 IAudioDevice::GetIsAudiomodeSupported Method

The GetIsAudiomodeSupported method is called by Client Line Manager to determine which Audio-
modes are actually supported by your device.

Syntax

 [id(10), helpstring("GetIsAudiomodeSupported")]
 HRESULT GetIsAudiomodeSupported(
 [in] AudioMode am,
 [out, retval] BOOL* pVal
);

Parameters

am [in]

 The requested AudioMode.

pVal [out]

 TRUE if AudioMode am is supported by your device, FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

4.2.1.9 IAudioDevice::DefaultAudioMode Property

The DefaultAudioMode property returns a vector containing the preferred AudioModes of the de-
vice.

Syntax

 [propget, id(11), helpstring("property DefaultAudioMode")]
 HRESULT DefaultAudioMode([out, retval] VARIANT* pVal);

Return Value

A vector with elements of type AudioMode the device is preferred for.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 21/52

Remarks

This value is used by Client Line Manager to automatically configure your device.

4.2.1.10 IAudioDevice::SetAudioMode Method

The SetAudioMode method is called by Client Line Manager when the current AudioMode changes.

Syntax

 [id(12), helpstring("SetAudioMode")]
 HRESULT SetAudioMode(
 [in] AudioMode newVal,
 [out, retval] BOOL* pReEstablishMedia
);

Parameters

newVal [in]

 The newly set AudioMode value.

pReEstablishMedia [out]

 TRUE if the SoundChannel ID’s are changing for your device regarding the new AudioMode,
 FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

Remarks

Return TRUE in pReEstablishMedia if the new OpenListening state is changing the result of a call to
GetSoundChannelID. If the new state of OpenListening is not changing anything for your device (re-
garding SoundChannels) return FALSE.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 22/52

4.2.1.11 IAudioDevice::SetDisplayHookState Method

The SetDisplayHookState method is called by Client Line Manager when the device should show a
specific hook state.

Syntax

 [id(13), helpstring("SetDisplayHookState")]
 HRESULT SetDisplayHookState(
 [in] BOOL bHookedOff
);

Parameters

bHookedOff [in]

 TRUE if the device should show a hooked off state, FALSE if the device should show a hooked
 on state.

Return Value

If the method succeeds, it returns S_OK.

Remarks

If your device is not able to visualize hook states you can safely ignore this call in your Plug-In imple-
mentation.

4.2.1.12 IAudioDevice::SetDisplayCallerInfo Method

The SetDisplayCallerInfo method is called by Client Line Manager when the device should show a
Caller Id.

Syntax

 [id(14), helpstring("SetDisplayCallerInfo")]
 HRESULT SetDisplayCallerInfo(
 [in] BSTR bstrCallerInfo
);

Parameters

bstrCallerInfo [in]

 The Caller Id which should be shown on the device.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 23/52

Return Value

If the method succeeds, it returns S_OK.

Remarks

If your device is not able to visualize caller Id’s you can safely ignore this call in your Plug-In imple-
mentation.

4.2.1.13 IAudioDevice::SetDisplayMuteState Method

The SetDisplayMuteState method is called by Client Line Manager whenever the device should show
a specific mute state.

Syntax

 [id(15), helpstring("SetDisplayMuteState")]
 HRESULT SetDisplayMuteState(
 [in] BOOL bMuted
);

Parameters

bMuted [in]

 TRUE if the device should display a muted state, FALSE if the device should display a not
 muted state.

Return Value

If the method succeeds, it returns S_OK.

Remarks

If your device is not able to visualize mute states you can safely ignore this call in your Plug-In imple-
mentation.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 24/52

4.2.1.14 IAudioDevice::StartRinger Method

The StartRinger method is called by Client Line Manager whenever the device should start its addi-
tional ringer – this is the case if an incoming call is available.

Syntax

 [id(16), helpstring("StartRinger")]
 HRESULT StartRinger(
 [in] BOOL bRingingDevice,
 [in] BOOL bSilent
);

Parameters

bRingingDevice [in]

 TRUE if the device is currently configured as a Ringing Device, FALSE if not.

bSilent[in]

 TRUE if the acoustic ringer should be disabled starting an optical signal only, FALSE if not.

Return Value

If the method succeeds, it returns S_OK.

Remarks

If your device is not able to enable an additional ringer you can safely ignore this call in your Plug-In
implementation.

If parameter bRingingDevice is TRUE, the device is configured as a Ringing Device in SwyxIt!. This can
only happen, if you support a ringing channel on your implementation. This parameter indicates if
you are really configured to use the ringing channel when the call to SetRinger happens. If you are
not the configured ringing device, you must decide whether you start a maybe existing “additional”
ringer (maybe because your device needs the “ringing” state for some internal reason) or to ignore
this call to SetRinger.

4.2.1.15 IAudioDevice::StopRinger Method

The StopRinger method is called by Client Line Manager whenever the device should stop its addi-
tional ringer.

Syntax

 [id(20), helpstring("StopRinger")]
 HRESULT StopRinger();

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 25/52

Return Value

If the method succeeds, it returns S_OK.

4.2.1.16 IAudioDevice:: GetIsSoundChannelSupported Method

The GetIsSoundChannelSupported method is called by Client Line Manager to ask the Plug-In if a
specific combination of AudioMode and SoundChannel is supported.

Syntax

 [id(17), helpstring("GetIsSoundChannelSupported")]
 HRESULT GetIsSoundChannelSupported(
 [in] AudioMode am,
 [in] SoundChannel sc,
 [out, retval] BOOL* pVal
);

Parameters

am [in]

 The requested AudioMode value.

sc [in]

 The requested SoundChannel value.

pVal [out, retval]

 TRUE if the device is supporting the given am / sc combination, FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

4.2.1.17 IAudioDevice::GetSoundChannelID Method

The GetSoundChannelID method is called by Client Line Manager to get the SoundChannelID of a
specific SoundChannel this device owns.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 26/52

Syntax

 [id(18), helpstring("GetSoundChannelID")]
 HRESULT GetSoundChannelID(
 [in] SoundChannel sc,
 [out, retval] BSTR* pVal
);

Parameters

sc [in]

 The requested SoundChannel value.

pVal [out, retval]

 The SoundChannel ID.

Return Value

If the method succeeds, it returns S_OK.

Remarks

The sound channel ID is the Windows OS specific device GUID in format
“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”.

4.2.1.18 IAudioDevice:: GetDefaultVolume Method

The GetDefaultVolume method returns the default volume value for the given AudioMode / Sound-
Channel combination.

Syntax

 [id(19), helpstring("GetDefaultVolume")]
 HRESULT GetDefaultVolume(
 [in] AudioMode am,
 [in] SoundChannel sc,
 [out, retval] USHORT* pVal
);

Parameters

am [in]

 The requested AudioMode value.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 27/52

sc [in]

 The requested SoundChannel value.

pVal [out, retval]

 The absolute percentage volume value.

Return Value

If the method succeeds, it returns S_OK.

4.2.1.19 IAudioDevice::SetVolume Method

The SetVolume method is called by Client Line Manager to inform the Plug-In of a new volume value
for the specified SoundChannel.

Syntax

 [id(21), helpstring("SetVolume")]
 HRESULT SetVolume(
 [in] SoundChannel sc,
 [in] USHORT Volume
);

Parameters

sc [in]

 The SoundChannel value.

Volume [in]

 The new absolute percentage volume value for the specified SoundChannel.

Return Value

If the method succeeds, it returns S_OK.

4.2.1.20 IAudioDevice::SetOpenListening Method

The SetOpenListening method is called by Client Line Manager to inform the Plug-In of a new Open-
Listening state.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 28/52

Syntax

 [id(22), helpstring("SetOpenListening")]
 HRESULT SetOpenListening(
 [in] BOOL bEnabled,
 [out, retval] BOOL* pReEstablishMedia
);

Parameters

bEnabled [in]

 TRUE if OpenListening is enabled, FALSE if OpenListening is disabled.

pReEstablishMedia [out, retval]

 TRUE if media should be re-established, FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

Remarks

Return TRUE in pReEstablishMedia if the new OpenListening state is changing the result of a call to
GetSoundChannelID. If the new state of OpenListening is not changing anything for your device (re-
garding SoundChannels) return FALSE.

4.2.1.21 IAudioDevice:: UseSoftwareEchoCancellation Method

The UseSoftwareEchoCancellation method is called by Client Line Manager to ask the Plug-In if echo
cancellation should be used for a particular SoundChannel.

Syntax

 [id(23), helpstring("UseSoftwareEchoCancellation")]
 HRESULT UseSoftwareEchoCancellation(
 [in] SoundChannel sc,
 [out, retval] BOOL* pbUse
);

Parameters

sc [in]

 The requested SoundChannel.

pbUse [out, retval]

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 29/52

 TRUE if echo cancellation should be enabled for the SoundChannel sc, FALSE if it should not
 be used for SoundChannel sc.

Return Value

If the method succeeds, it returns S_OK.

4.2.1.22 IAudioDevice:: GetMediaBufferCount Method

The GetMediaBufferCount method is called by Client Line Manager to determine the buffer byte
count for the media render buffer.

Syntax

 [id(26), helpstring("GetMediaBufferCount")]
 HRESULT GetMediaBufferCount(
 [in] AudioMode am,
 [in] SoundChannel sc,
 [out, retval] LONG* pVal
);

Parameters

am [in]

 The requested AudioMode value.

sc [in]

 The requested SoundChannel value.

pVal [out, retval]

 The media buffer byte count for the given am / sc combination.

Return Value

If the method succeeds, it returns S_OK.

4.2.1.23 IAudioDevice:: EnumSoundChannelIDs Method

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 30/52

The EnumSoundChannelIDs method is called by Client Line Manager to get a list of all SoundChannel
ID’s used by your device.

Syntax

 [id(27), helpstring("EnumSoundChannelIDs")]
 HRESULT EnumSoundChannelIDs(
 [out, retval] VARIANT* pVal
);

Parameters

pVal [out, retval]

 A safe array containing all SoundChannel ID’s (strings) used by your device.

Return Value

If the method succeeds, it returns S_OK.

Remarks

You can use the IAudioVolumeControl COM Component made by Swyx Solutions to enumerate all
SoundChannel(IDs) used by your device.

4.3 _IAudioDeviceEvents Interface

The _IAudioDeviceEvents interface is the event sink interface for IAudioDevice implementations. You
need to fire the events defined in that interface to inform Client Line Manager whenever something
changes in your device related to these events.

4.3.1.1 _IAudioDeviceEvents::OnHook Event

The OnHook event should be fired by Plug-In whenever the hook state changed on the device.

Syntax

 [id(1), helpstring("HookChanged event from audio device.")]
 HRESULT OnHook(
 BOOL bHookOff,
 AudioMode mode
);

Parameters

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 31/52

bHookOff

 TRUE if the event is a hook off event, FALSE otherwise.

mode
 The audio mode identifier for that hook event (describes the device which the hook event
 was meant for).

Return Value

If the method succeeds, it returns S_OK.

4.3.1.2 _IAudioDeviceEvents::OnDetached Event

The OnDetached event should be fired whenever the device is detached from system.

Syntax

 [id(2), helpstring("Device detached from system.")]
 HRESULT OnDetached();

Return Value

If the method succeeds, it returns S_OK.

4.3.1.3 _IAudioDeviceEvents::OnAudioEnabled Event

The OnAudioEnabled event should be fired whenever the audio link is enabled for your device.

Syntax

 [id(3), helpstring("Audio enabled on or off.")]
 HRESULT OnAudioEnabled(BOOL bAudioEnabled);

Parameters

bAudioEnabled

 TRUE if the audio link is enabled, FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 32/52

4.3.1.4 _IAudioDeviceEvents::OnMute Event

The OnMute event should be fired whenever the device is muted or unmuted.

Syntax

 [id(4), helpstring("Microphone mute.")]
 HRESULT OnMute(BOOL bMute);

Parameters

bMute

 TRUE if the device is muted, FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

4.3.1.5 _IAudioDeviceEvents::OnVolume Event

The OnVolume event should be fired whenever the volume level for your devices changes.

Syntax

 [id(5), helpstring("Volume changed event.")]
 HRESULT OnVolume(
 SoundChannel channel,
 SHORT Level,
 AudioLevelPercentType audioLevelPercentType
);

Parameters

channel

 The SoundChannel for which the volume had changed.

Level

 The new volume level in percentage. Depending on parameter audioLevelPercentType this
 value can be negative.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 33/52

audioLevelPercentType

 Indicates how the value of Level must be handled. If the value is “AudioLevelPercentAbso
 lute” Level must contain a positive percentage value. If the value is “AudioLevelPercentDelta”
 the Level value is handled as an increment (a decrement) value of the current volume level.

Return Value

If the method succeeds, it returns S_OK.

Remarks

With this event you can create a device specific volume handling. Example: If your device has its own
volume buttons (increase volume and decrease volume) you can easily fire this event with a delta
value of e.g. +5 (increase volume button) or -5 (decrease volume button) and provide the value Au-
dioLevelPercentDelta with the call – so Client Line Manager knows what to do.

4.3.1.6 _IAudioDeviceEvents::OnHeadsetState Event

The OnHeadsetState event should be fired by your device whenever the user switches the communi-
cation actively to the headset of the device. This is the case for devices which owns a headset as an
additional communication option.

Syntax

 [id(6), helpstring("Headset weared.")]
 HRESULT OnHeadsetState(
 BOOL bWeared
);

Parameters

bWeared

 TRUE if the headset is weared and should be used, FALSE otherwise.

Return Value

If the method succeeds, it returns S_OK.

4.3.1.7 _IAudioDeviceEvents::OnReInitialisation Event

The OnReInitialisation event should be fired by your device whenever it needs to be initialized again.

Syntax

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 34/52

 [id(7), helpstring("Reinitialisation of device requested.")]
 HRESULT OnReInitialisation();

Return Value

If the method succeeds, it returns S_OK.

4.3.1.8 _IAudioDeviceEvents::OnSpeakerKey Event

The OnSpeakerKey event should be fired by your device whenever the speaker key (which enables
an integrated speaker on your device) is pressed on your device.

Syntax

 [id(8), helpstring("Speakerkey pressed or not.")]
 HRESULT OnSpeakerKey(
 BOOL bDown
);

Parameters

bDown

 TRUE if the speaker key is down, FALSE if it is up.

Return Value

If the method succeeds, it returns S_OK.

4.3.1.9 _IAudioDeviceEvents::OnTraceLine Event

The OnTraceLine event should be fired by your plug-in every time you need to trace a line. This event
is very important for error and functionality tracing of your plug-in.

Syntax

 [id(9), helpstring("Tracing purposes.")]
 HRESULT OnTraceLine(
 BSTR bstrLine
);

Parameters

bstrLine

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 35/52

 The string you want to trace.

Return Value

If the method succeeds, it returns S_OK.

Remarks

The traces will be written to the Client Line Manager Log file.

4.3.1.10 _IAudioDeviceEvents::OnRejectCall

The OnRejectCall event should be fired by your plug-in every time you want to reject an incoming
call.

Syntax

 [id(10), helpstring("Device rejected incoming call.")]
 HRESULT OnRejectCall();

Return Value

If the method succeeds, it returns S_OK.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 36/52

5 AudioVolumeControl COM-Component

The AudioVolumeControl COM component is a useful tool to handle Audio Devices and Sound Levels
independent from operating system. Audio devices and their settings are handled differently be-
tween Windows XP and Windows Vista upwards. This control handles the differences transparently
for you. Nevertheless under Windows XP it is possible to give the AudioVolumeControl hints how to
treat the soundchannels for enhanded flexibility.

This documentation chapter describes the interfaces offered by AudioVolumeControl COM compo-
nent.

5.1 IAudioVolumeControlCollection Interface

Provides methods to enumerate all Audio Devices known to the operating system.

The IAudioVolumeControlCollection interface inherits from IDispatch interface. IAudioVolumeCon-
trolCollection has the following Properties and Methods:

5.1.1 Properties and Methods

5.1.1.1 IAudioVolumeControlCollection::Initialize Method

Call this method to initialize the IAudioVolumeControlCollection. You can provide a device (friendly)
name as a parameter so the collection will only contain items which matches the given name.

Syntax

 [id(1), helpstring("Initialize")]
 HRESULT Initialize(
 BSTR bstrRequestedDevice
);

Parameters

bstrRequestedDevice [in]

 The requested device to get Sound Channels for. It can be a part of a name or the complete
 name. Provide an empty string to get all known Audio Devices from the system.

http://msdn.microsoft.com/en-us/library/dd318520(v=vs.85).aspx

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 37/52

Return Value

If the method succeeds, it returns S_OK.

Remarks

The bstrRequestedDevice parameter can be used to filter the Audio Device list for a particular device
name. The friendly name is used to determine the owner of an audio device. You can also provide a
part of the name – the collection will contain all audio devices which matches the name or a part of
it.

5.1.1.2 IAudioVolumeControlCollection::InitializeEx Method

Call this method to initialize the IAudioVolumeControlCollection. You can provide a device (friendly)
name as a parameter so the collection will only contain items which matches the given name. Addi-
tionally you can specify the desired volume control.

Syntax

 [id(1), helpstring("Initialize")]
 HRESULT Initialize(
 [in] BSTR bstrRequestedDevice,
 [in] BOOL AdjustMasterVolume,
 [out, retval] BOOL *pbMixerAPI
);

Parameters

bstrRequestedDevice [in]

 The requested device to get Sound Channels for. It can be a part of a name or the complete
 name. Provide an empty string to get all known Audio Devices from the system.

AdjustMasterVolume[in]

Applies only under Windows XP. If set, the AudioVolumeControl will use the Master Volume
control to adjust the volume. Otherwise the Wave In Volume Control.

Return Value

TRUE, if under Windows XP, otherwise FALSE.

Remarks

See Initialize.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 38/52

5.1.1.3 IAudioVolumeControlCollection::UnInitialize Method

Call this method to uninitialize the IAudioVolumeControlCollection.

Syntax

 [id(2), helpstring("UnInitialize")]
 HRESULT UnInitialize();

Return Value

If the method succeeds, it returns S_OK.

5.1.1.4 IAudioVolumeControlCollection::Count Property

The Count property returns the count of IAudioVolumeControl instances in the collection.

Syntax

 [propget, id(3)]
 HRESULT Count(
 [out, retval] long *pVal
);

Return Value

The count of IAudioVolumeControl instances in the collection.

5.1.1.5 IAudioVolumeControlCollection:: GetAudioVolumeControl Method

The GetAudioVolumeControl Method returns the IDispatch of an IAudioVolumeControl of the collec-
tion.

Syntax

 [id(4)]
 HRESULT GetAudioVolumeControl(
 [in] ULONG Index,

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 39/52

 [out, retval] IDispatch **pDisp
);

Parameters

Index [in]

 The requested index of the collection item.

pDisp [out, retval]

 The item with index Index.

Return Value

If the method succeeds, it returns S_OK.

5.2 IAudioVolumeControl Interface

The IAudioVolumeControl interface provides methods and properties to handle volume levels of a
particular soundchannel of an audio device known by the system.
You can only access objects of this type via the method

IAudioVolumeControlCollection::GetAudioVolumeControl.

The IAudioVolumeControl interface inherits from IDispatch interface. IAudioVolumeControl has the
following Properties and Methods:

5.2.1 Properties and Methods

5.2.1.1 IAudioVolumeControl::FriendlyName Property

The FriendlyName property contains the friendly name of the Windows audio device represented by
that instance of IAudioVolumeControl.

Syntax

 [propget, id(1), helpstring("property FriendlyName")]
 HRESULT FriendlyName(
 [out, retval] BSTR* pVal
);

http://msdn.microsoft.com/en-us/library/dd318520(v=vs.85).aspx

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 40/52

Return Value

The friendly Name of the audio device.

5.2.1.2 IAudioVolumeControl::GUID Property

The GUID property contains the GUID of the Windows audio device represented by that instance of
IAudioVolumeControl.

Syntax

 [propget, id(2), helpstring("property GUID")]
 HRESULT GUID(
 [out, retval] GUID* pVal
);

Return Value

The GUID of the audio device.

5.2.1.3 IAudioVolumeControl::FormFactor Property

The FormFactor property contains the form factor of the Windows audio device represented by that
instance of IAudioVolumeControl.

Syntax

 [propget, id(3), helpstring("property FormFactor")]
 HRESULT FormFactor(
 [out, retval] AudioDeviceFormFactor* pVal
);

 [propput, id(3), helpstring("property FormFactor")]
 HRESULT FormFactor(
 [in] AudioDeviceFormFactor Val
);

Return Value

The FormFactor of the audio device. See enum AudioDeviceFormFactor for more information.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 41/52

5.2.1.4 IAudioVolumeControl::DataFlow Property

The DataFlow property contains the data flow of the Windows audio device represented by that in-
stance of IAudioVolumeControl.

Syntax

 [propget, id(4), helpstring("property DataFlow")]
 HRESULT DataFlow(
 [out, retval] AudioDeviceDataFlow* pVal
);

 [propput, id(4), helpstring("property DataFlow")]
 HRESULT DataFlow(
 [in] AudioDeviceDataFlow Val
);

Return Value

The FormFactor of the audio device. See enum AudioDeviceFormFactor for more information.

5.2.1.5 IAudioVolumeControl::VolumePercent Property

The VolumePercent property allows you to get and set the volume level for that audio device in per-
centage values.

Syntax

 [propget, id(5), helpstring("property VolumePercent")]
 HRESULT VolumePercent(
 [out, retval] BYTE* pVal
);

 [propput, id(5), helpstring("property VolumePercent")]
 HRESULT VolumePercent(
 [in] BYTE newVal
);

Return Value

The percentage value of the volume level for that particular device.

5.2.1.6 IAudioVolumeControl::Volume Property

The Volume Property allows you to set and get the normalized volume level for that particular de-
vice.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 42/52

Syntax

 [propget, id(6), helpstring("property Volume")]
 HRESULT Volume(
 [out, retval] FLOAT* pVal
);

 [propput, id(6), helpstring("property Volume")]
 HRESULT Volume(
 [in] FLOAT newVal
);

Return Value

The value of the normalized volume level for that particular device.

5.2.1.7 IAudioVolumeControl::Mute Property

The Mute property allows you to set and get the Mute state of the Windows audio device represent-
ed by that instance of IAudioVolumeControl.

Syntax

 [propget, id(7), helpstring("property Mute")]
 HRESULT Mute(
 [out, retval] BOOL* pVal
);

 [propput, id(7), helpstring("property Mute")]
 HRESULT Mute(
 [in] BOOL newVal
);

Return Value

The current Mute state for that particular device.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 43/52

5.2.1.8 IAudioVolumeControl::SetMux Method

Applies only under Windows XP. The SetMux Method allows to switch between several microphones
of the audio device.

Syntax

 [id(8), helpstring("SetMux")]
 HRESULT SetMux(
 [in] ULONG InputIndex
);

Parameters

ULONG [in]

 The index of the microphone mixer line.

Return Value

If the method succeeds, it returns S_OK.

5.2.1.9 IAudioVolumeControl::ModuleName Property

The ModuleName property contains the module name of the Windows audio device represented by
that instance of IAudioVolumeControl.

Syntax

 [propget, id(9), helpstring("property ModuleName")]
 HRESULT ModuleName(
 [out, retval] BSTR* pVal
);

Return Value

The module name of that audio device.

5.2.1.10 IAudioVolumeControl::GUIDAsString Property

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 44/52

The GUIDAsString property contains the GUID property value as a string.

Syntax

 [propget, id(10), helpstring("property GUIDAsString")]
 HRESULT GUIDAsString(
 [out, retval] BSTR* pVal
);

Return Value

The GUID property of that audio device as a string.

5.2.1.11 IAudioVolumeControl::Index Method

Applies only under Windows XP. The Index Method allows to query the index of the mixer line.

Syntax

 [propget, id(11), helpstring("property Index")]
 HRESULT Index(
 [out, retval] LONG* pVal
);

Parameters

Return Value

The index of the mixer line.

5.2.1.12 IAudioVolumeControl::SetSourceLine Method

Applies only under Windows XP. The SetSourceLine Method allows to set the desired mixer source
line of the volume control.

Syntax

 [id(12), helpstring("SetSourceLine")]
 HRESULT SetSourceLine(
 [in] ULONG LineIndex
);

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 45/52

Parameters

ULONG [in]

 The index of the mixer source line.

Return Value

If the method succeeds, it returns S_OK.

5.2.1.13 IAudioVolumeControl::SetSourceMute Method

Applies only under Windows XP. The SetSourceMute Method allows to set the desired mixer source
line of the mute control.

Syntax

 [id(13), helpstring("SetSourceMute")]
 HRESULT SetSourceMute(
 [in] ULONG LineIndex
);

Parameters

ULONG [in]

 The index of the mixer source line.

Return Value

If the method succeeds, it returns S_OK.

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 46/52

6 Appendix

6.1 Sequence diagrams

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 47/52

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 48/52

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 49/52

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 50/52

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 51/52

Audio Device Plugin Development

Modified: 12.12.2011 14:22:00 52/52

